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EXECUTIVE SUMMARY

The goal of this project was to build an educational tool for students taking the course ECE460N
Computer Architecture that will assist them as they learn material throughout the semester. There
were several steps to accomplish this goal. First, we identified a large set of parameters, which
were essential to the design of any computer architecture; we then considered a range of
reasonable changes that could be made to these parameters, such as different memory
organizational patterns, different types of microarchitecture, different branch predictors, etc.
Secondly, we took this set of parameters, and simulated each of their performance using a
simulator. Then the performance data was stored in a database for use in the user interface tool,
which displays the stored data for students to access.

Our system design includes three major subsystems: the simulator, database and data
management, and website for the user interface. The simulator includes the parameters being
simulated, the benchmarks those parameters are run against, and the simulator itself. The
database consists of the database itself and data management for how the data is input from the
simulator, digested for storage into the database, and the formatting and code to be output to the
website. The website includes the integration from the database to frontend website code as well
as the user interface for students to interact with in addition to graphical data representations.

The parameters to vary within the tool need to cover as many different configurations as possible
while also not overwhelming the user with too many options to allow the user to gain a
meaningful understanding of the effects of the different parameters on the performance metrics.
Additionally, the total number of configurations grows exponentially with the number of
parameters. Since each simulation takes a non-trivial amount of time to complete, this limits the
total number of parameters that could have been chosen. With these restraints in mind, seven
parameters were identified, and reasonable values for each parameter have also been selected.
Again, the number of values for each parameter must be limited to reduce simulation count, but
also chosen carefully to cover a wide enough range of values such that they will have a
measurable impact on the results.

To effectively demonstrate the performance differences a robust benchmark is required. We used
SPEC CPU 2017 as our benchmark suite. Due to simulation time constraints, only one of the
benchmarks could be used. Any singular benchmark would take too long to simulate, and so the
benchmark had to be broken down into smaller chunks called simulation points, or SimPoints.
These SimPoints were generated using Valgrind to record basic block vectors for each interval of
100 million instructions in the benchmark, then the SimPoint tool was used to find one interval
which best represented the entire benchmark. This 100 million instruction interval was
determined to be the best overall representation of SPEC CPU 2017 while also being small
enough to not exceed the simulation time limits for this project.

The gemS5 simulator was used to gather performance data for each simulation configuration.
Since the SimPoint only specifies the point in the execution at which to start simulating, the state
of the simulation must be saved at that point and then restored for each simulation. The script
which was used to configure gem5 for this task had to take the SimPoint information as well as
the benchmark binary and inputs as arguments. Once the checkpoint had been created, detailed
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simulations could be run using the gem5 O3 CPU model. The script for these runs had to take the
aforementioned SimPoint information as well as the checkpoint and all of the parameters for the
simulation.

The database storage functionality was required to have the ability to digest data from the
simulator, store the data using a specified data schema into the database itself, allow access to the
data from the database, and be fully integrated into the front-end code of the website through the
user interface. All code is in Python and the database storage service is through MongoDB. This
allowed ease of coding use and data manipulation using libraries such as pandas and numpy in
addition to integration with MongoDB and the front-end code. The amount of space we used in
the database did not exceed the free plan available with MongoDB and the speed of access times
are also not important to users.

The first element inside the website is the front-end server, which handles rendering the web
pages that the user interacts with. Requests sent from the front-end to the DBaaS are sent through
a React component that will handle network failures and retries. The UI contained in the
front-end code has multiple pages for the user to gain a better understanding of the computer
architecture content that our site pertains to as well as systems for the user to pull simulated
performance metrics for a set of input parameters. It also contains multiple ways to compare that
data as you vary sets of parameters, such as how a specific performance metric changes as you
increment or decrement a system parameter.

The front-end is composed of multiple key libraries, frameworks, and environments. React was
chosen as the structure for site over alternatives like Flutter, Angular, and jQuery because of its
simplicity and familiarity. Chart.js, React-toastify, and Styled-components are all additional
libraries that will help generate our graphs, send notifications, and reduce the clutter of our react
components respectively.

The DBaaS server is the server that handles data and communication with the database. It
verifies that requests to specific URLs return properly serialized, formatted information that the
front-end can utilize. The DBaaS is a service provided by MongoDB which is also hosting our
database. Additionally, it allows the definition of functions that can be performed on the database
and queried from the front-end. We interact with this DBaaS using Realm-web which is a
lightweight package that provides connection functionality to Mongo services.

Many of the parameters changed throughout the implementation process due to unforeseen
limitations in both time available to run simulations and in what parameters could be feasibly
changed using the gem5 standard library. Originally, there were around twice as many planned
parameters, with many more values that were planned for simulation. However, each additional
parameter multiplies the total number of simulations by its number of values, causing an
exponential increase in simulation time as each parameter is added. Additionally, the limitations
within the gemS5 standard library made it unfeasibly difficult to use certain other parameters, as
to do so major modifications would have to be made to the standard library to expose those
variables.
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The benchmark was originally going to be SPEC CPU 2006, however we changed to the 2017
version since that was the version that we had access to through our faculty mentor. Additionally,
we had originally planned to run at least three of the benchmarks within SPEC, but again due to
simulation time constraints we had to use only one of the benchmarks, 505.mcf r. For similar
reasons only one checkpoint within that benchmark was used.

For the database, there was only one change made between the planning and implementation
phases of the project. Originally, the database was designed to hold data in a mixed hierarchy
data schema, where certain data points would be prioritized over others for ease of searchability
when being called by the website. This proved to be unnecessary, as the website could easily
parse whole dictionaries of data in the form of stored documents for the simulator outputs. Thus,
the data outputs were stored as dictionaries, after being scraped for only needed data, and then
were easily accessed by the website.

When initially creating the website, it was designed with a front-end and back-end server that
was connected to the database. Given the simplicity of the query-based nature of the website, the
backend server was deemed unnecessary as the front-end server could query directly to the
public database. Originally, the website was designed so that students could submit a few
parameters they wanted to keep static, and one they wanted to sweep over to observe how
performance changes. However, it became apparent that graphing the higher dimensional graphs
required to represent multi-variable states would become too complex and outside the
capabilities of the graphing library used on this website. Due to the complexity of simulation, it
was uncertain which parameters and metrics would be used by the end of the project. During
implementation, it was decided that the website would be configurable such that it would
recursively build out its inputs, allowing for rapid reconfiguration.

Simulator testing was completed by executing the procedure for creating and running
checkpoints and simulations and confirming that the results given were reasonable. Database
testing was outlined as including three key parts: access efficiency, correct data storage, and
correct data reads. All three have been successfully tested and have shown positive results for the
system in its final state. Website testing was successful, allowing the website to maintain a low
level of code length while maintaining quality. The new recursive structure is capable of
dynamically handling the input type of nested values depending on the value of previously
selected inputs which was not possible with the previously static structure.

The simulator took significantly longer to get working than originally anticipated, this was due to
complications with limited documentation and difficulties in using gemS5 to create checkpoints
and restore from them.

Although most of the output data management code had been written and tested, there was a
significant gap in time before actual output data was received for processing. However, once data
was received, the code was able to be run and within a few hours, the database had been
populated, ready for use by the website. Due to the complexity of the data simulation, the
website was unable to be built statically for a set of expected inputs which required a significant
amount of flexible, dynamic design to handle any range of inputs. The result is a very extensible,
quickly-modifiable site that can be changed to handle all types of data from a single config file.
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In terms of possible ethical problems with our design, there is the potential issue of data posted
on the website not allowing students to learn the correct information they might be looking for
from the project, thus either invalidating the learning goals or worse, teaching the wrong things.

We have done our best to make sure that all simulation data is accurate and is presented in an
intuitive way to students so that any misunderstandings or misinformation are minimized, if not
eliminated.

Past the current iteration of the project, multiple recommendations can be made for further
improvements, changes, or even experiments to run. For the simulator, more parameter and
benchmark options could be used. For the database, a different document hierarchy or database
service could be explored. Lastly, for the website, different visual aids might be possible or more
helpful for students.

Overall, the Computer Architecture Explorer was split into three separate main subsystems: the
simulator, the database, and the website. The gemS5 simulator ran benchmark code to generate
performance data for the computer architecture using various parameters, the performance
metrics and specific settings were stored in a database, and lastly the website allows students to
pull different scenarios from the database and view them in a user interface. The gemS5 simulator
was chosen over a custom design, MongoDB was used for the database service with panda and
numpy for data crunching and sorting, and the website uses React, NodeJS, Chart.js, Realm-web,
Styled-Component, and AWS.
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1.0 INTRODUCTION

This document outlines how we approached building an intuitive computer architecture
exploration tool for students taking Computer Architecture and those who are also looking to
learn how changing system parameters affects performance metrics. The following content
discusses our design problem, design solution, final implementation, testing and evaluations
performed, time and cost considerations, safety and ethical aspects of the design where
applicable, and future work and recommendations for further improvements. As an overall
summary of the design, the tool had its data generated using the gem5 open-source, processor

simulator and displayed through a free website running off of NodelS, Django, and MongoDB.

2.0 DESIGN PROBLEM STATEMENT

The goal of this project was to build an educational tool for students taking the course ECE460N
Computer Architecture that will assist them as they learn material throughout the semester. There
were several steps to accomplish this goal. First, we identified a large set of parameters, which
were essential to the design of any computer architecture; we then considered a range of
reasonable changes that could be made to these parameters, such as different memory
organizational patterns, different types of microarchitecture, different branch predictors, etc.
Secondly, we took this set of parameters, and simulated each of their performance using a
simulator. Then the performance data was stored in a database for use in the user interface tool,

which displays the stored data for students to access.

2.1 Specifications

In order to be successful, the tool that we created must be a useful tool for students learning
computer architecture. The parameters that we chose must be relevant to the course and be
recognizable to students in the class. The parameters must also cover as much of the class as
possible, so that students will be able to reinforce what they have learned from any part of the
class. The performance parameters that the tool shows should be recognizable to students in the
class and be able to clearly demonstrate the differences between various architecture
configurations. The database needs to be fast enough to serve the data without any noticeable lag
for the user. All data accessed from the database must be accurate to the correct simulated

parameters requested. The tool should be easy to access for all UT ECE students. The interface



should be intuitive and provide a good user experience. The tool should also include

explanations of the various parameters and performance data shown.

2.2 Background Information
Computer architecture is a complex field, and a basic understanding of it is required to
understand this project. This section explains some of the concepts that are related to the areas of

computer architecture that this project will cover.

2.2.1 Memory

In modern computer systems, roughly 90% of the hardware is made up of various forms of
memory technologies. This system of memories is organized into an optimized hierarchy by
studying the various trade-offs between capacity, speed, and cost. This memory hierarchy is

generally broken down into three tiers: cache, main memory, and secondary storage.

The cache is the fastest and closest physically to the processor, as it is integrated as a part of the
CPU package. Caches are extremely fast but this technology (SRAM) is also extremely costly,
therefore caches are usually broken down into their own hierarchy (L1, L2, L3) to further
optimize capacity and speed. Most systems have a tiny but extremely fast L1 cache that is the
closest to each core of the CPU, this level is sometimes broken down further into an instruction
cache and a data cache, to further optimize performance. The next level is the L2 cache, which is
bigger than the L1 cache, and in turn it is slower. The final level is the L3 cache, which is a large
cache that is usually shared between all cores in the CPU, with each core “owning” a piece of the
whole L3 cache. Changes to the sizes of the cache hierarchy, as well as internally organizations
and designs of specific levels have a dramatic impact on performances, and this level of memory

has perhaps the largest effect on overall system performance.

Main memory, more commonly known as RAM, is the next level of the memory hierarchy. RAM
uses DRAM technology, which is several magnitudes slower than the SRAM used in caches.
However, this decrease in performance is accompanied by a large increase in memory area
efficiency, and a decrease in manufacturing cost. This is the reason that modern computers often

have tens of megabytes of cache, but many gigabytes or even terabytes of RAM. The purpose of



RAM is to fetch data from the much slower secondary storage devices and have it ready “on
standby” to be loaded into the cache. However, RAM does not have the capacity to
simultaneously hold a large amount of data from secondary storage, which is why various
hardware and software techniques exist to counteract this fact. One such method is virtual

memory, which will not be discussed as it is outside the scope of this project.

Secondary storage devices, most commonly HDD and SSD devices, are the lowest tier of the
memory hierarchy. These devices provide very large capacities (many terabytes) at the cost of
being extremely slow. Thus, the CPU will never access these devices directly, as doing so will
have catastrophic impacts on performance. Rather, data will be forwarded to RAM, where it
waits to be cached. Secondary storage is still a crucial part of the memory hierarchy, as it

provides long-term data storage.

2.2.2 Pipelining
Modern CPUs are built upon three key concepts: Pipelining, Branch Prediction, and Out of Order
Execution. These three techniques work in tandem to maximize core utilization and performance,

thereby dramatically increasing throughput.

A pipeline is the fundamental structure of all modern CPUS. Each instruction is processed in
discrete, isolated stages by dedicated hardware. This allows for instruction level parallelism
whereby multiple instructions exist within the pipeline simultaneously, all in different stages of
processing. This allows for a greater overall throughput. Pipelines are generally divided into 5
broad stages: Fetch, Decode, Execute, Memory Access, and Writeback. These stages may be
further broken down into different stages, and they themselves pipelined, to achieve even higher
parallelism and utilization. However, in general, the way a pipeline is built, how many stages it
has, and various details in the design such as bypassing directly impact instruction processing

speed and throughput.

One major flaw of pipelines is the fact that all software can have situations that would cause the

pipeline to stall, meaning although there are stages that are empty, no instructions can be put into



them to be processed due to various dependencies from previous instructions that have yet to
reach the end of the pipeline and resolve. Branch prediction and out-of-order execution seek to
remedy this flaw. Normally, when a pipeline encounters a branch, the system must stall until the
branch resolves before fetching the next instruction, effectively wasting a number of clock cycles
equal to the pipeline depth. However, if a pipeline employs a branch predictor, the pipeline can
immediately fetch the next instruction without having to wait for the previous branch to resolve.
There are numerous branch prediction algorithms, each with their own performance and cost
trade-offs, and this choice has an effect on system performance, as any branch mispredictions
will have large impacts on the throughput, since the pipeline must be flushed out, and
instructions re-fetched. It should be noted that branch predictors only solve one problem, which
are stalls caused by a branch dependency. There are other types of dependencies, most of which
are caused by instructions stalling to wait for data which is not available until previous
instructions are resolved. Out-of-order execution (O3E) solves this problem. O3E buffers all
instructions and only allows instructions to enter the execute stage when all its dependencies are
resolved. This allows instructions that don’t depend on previous instructions to skip over
instructions that have unresolved dependencies, effectively eliminating stalls. Hence, this method
will execute instructions out of order from the original order that they were fetched in. The
obvious issue with this approach is that the software expects its program to execute in order. The
reorder buffer mitigates this issue by buffering instructions until their appropriate commit time;
This maintains the illusion of a von Neumann computing model while enjoying the performance
of an out of order execution model. Along a similar vein, processors often have more physical
registers than architectural registers. This enables techniques such as register renaming, which
allows the processor to dynamically map architectural registers (ISA) to a larger number of
physical registers (microarchitecture). This in turn enables out of order execution, maximizing

the use of functional units and reducing stalls.

Functional units (FUs) are another large factor in the performance of a specific
microarchitecture, since they are what actually executes instructions during the execute stage.
The number of functional units in a microarchitecture significantly influences its overall
performance by providing a ceiling for the pipeline throughput and determining to which degree

instruction level parallelism can be exploited. Intuitively a larger amount of FUs allow the



processor to execute more instructions in parallel, increasing throughput; inversely a smaller
number of FUs will have a negative impact on the overall throughput of a processor. It should be
noted that at a certain threshold there will be significant diminished returns for adding more FUs,
as the processor’s front end will struggle to take advantage of all the additional hardware. In fact
this is a problem that many modern processors run into, thus techniques such as simultaneous

multithreading are employed to mitigate this problem.

Modern CPUs have been implementing increasingly complex pipelines that effectively utilize
branch prediction and O3E, as well as other concepts such as superscalar and super-pipelines to
create highly sophisticated systems that enhance parallelism and resource utilization, resulting in
more efficient and faster instruction processing. The various specific implementations of these

features greatly impact the performance of the system.

2.3 Conclusion

In conclusion, modern computer systems are extremely complex and sophisticated, and employ
various elaborate systems and techniques to gain performance for various trade-offs. Any change
to these specifications can have deep impacts on system performance, and specific combinations
of these parameters may work well together whereas other combinations are fundamentally
incompatible. We hoped to capture these characteristics and relationships within our simulation

performance data.

3.0 DESIGN SOLUTION

This section discusses multiple aspects of our system that are required for it to function and
deliver the product that we set out to create. We will discuss its design concept, risks, and testing
plan. Each of these has multiple subsections detailing them, identifying our findings when
researching and preparing as well as key insights regarding the future and continued

development of each project aspect.

3.1 Design Concept
Our system design includes three major subsystems: the simulator, database and data

management, and website for the user interface. The simulator includes the parameters being



simulated, the benchmarks those parameters are run against, and the simulator itself. The
database consists of the database itself and data management for how the data is input from the
simulator, digested for storage into the database, and the formatting and code to be output to the
website. The website includes the integration from the database to frontend website code as well
as the user interface for students to interact with in addition to graphical data representations.
Figure 1, below, describes the system block diagram to show the flow of data between the three
major subsystems. The following sections also describe the project in more detail on an

individual subsystem level.

Identify
Benchmarks
to Run

Website
gems Store Data in Development

Simulator MongoDB and Data

Identify
Parameters to
Simulate

Figure 1. System Block Diagram

3.1.1 Parameters

The parameters to vary within the tool need to cover as many different configurations as possible
while also not overwhelming the user with too many options to allow the user to gain a
meaningful understanding of the effects of the different parameters on the performance metrics.
Additionally, the total number of configurations grows exponentially with the number of
parameters. Since each simulation takes a non-trivial amount of time to complete, this limits the
total number of parameters that could have been chosen. With these restraints in mind, seven
parameters were identified, and reasonable values for each parameter have also been selected.
Again, the number of values for each parameter must be limited to reduce simulation count, but
also chosen carefully to cover a wide enough range of values such that they will have a

measurable impact on the results. The parameters that were chosen are summarized in Table 1.



Parameter Name Parameter Values
L1 Data Cache Size 8 kB 32kB 128 kB
L2 Cache Size 128 kB 512 kB 2048 kB
Branch Predictor 2-Bit Local TAGE Perceptron
Reorder Buffer Size 32 128 512
Physical Register Count 128 256 512
ALU Count 1 4 16
Multiplier/Divider Count 1 4 16

Table 1. Simulation Parameter List

3.1.2 Benchmarks

To effectively demonstrate the performance differences a robust benchmark is required. We used
SPEC CPU 2017 [1] as our benchmark suite. It provides 10 INT (integer) benchmarks, each of
which has both a SPECspeed benchmark and a SPECrate benchmark. The SPECrate benchmarks
are more suited for single threaded testing, so they were selected. Due to simulation time
constraints, only one of the benchmarks could be used. Therefore, the 505.mcf r benchmark was
chosen since it is a part of the representative subset of SPECrate INT that is recommended in
“Experiments with SPEC CPU 2017” [2]. Any singular benchmark would take too long to
simulate, and so the benchmark had to be broken down into smaller chunks called simulation
points, or SimPoints, as described in “Automatically Characterizing Large Scale Program
Behavior” [3]. These SimPoints were generated using Valgrind [4] to record basic block vectors
for each interval of 100 million instructions in the benchmark, then the SimPoint tool [5] was
used to find one interval which best represented the entire benchmark. This 100 million
instruction interval was determined to be the best overall representation of SPEC CPU 2017

while also being small enough to not exceed the simulation time limits for this project.



3.1.3 Simulator

The gem5 simulator [6] was used to gather performance data for each simulation configuration.
Since the SimPoint only specifies the point in the execution at which to start simulating, the state
of the simulation must be saved at that point and then restored for each simulation. This saved
state, or checkpoint, was created using gemS5 in a fast-forward mode using the simple atomic
CPU model. The script which was used to configure gemS5 for this task had to take the SimPoint
information as well as the benchmark binary and inputs as arguments, and is in Appendix A.
Once the checkpoint had been created, detailed simulations could be run using the gem5 O3 CPU
model. The script for these runs had to take the aforementioned SimPoint information as well as
the checkpoint and all of the parameters for the simulation, and is in Appendix B. Finally, the
GNU parallel tool [7] was used to run all 2,187 combinations of the simulation parameters on a

modern 16 thread desktop machine, which took roughly 24 hours to complete.

3.1.4 Database

The database storage functionality was required to have the ability to digest data from the
simulator, store the data using a specified data schema into the database itself, allow access to the
data from the database, and be fully integrated into the front-end code of the website through the
user interface. All code is in Python and the database storage service is through MongoDB. This
allowed ease of coding use and data manipulation using libraries such as pandas and numpy in
addition to integration with MongoDB and the front-end code. We had experience from previous
coursework, ECE 461L (Software Engineering and Design Laboratory), using MongoDB
through Python and integrating it into a front-end website, allowing users to interact with an
interface to call data from the database and have it displayed. Thus, the choice of MongoDB as
our database service was easy and reliable. In addition, MongoDB allowed for free use of a
shared server, and thus, cost nothing from our project budget. The amount of space we used in
the database did not exceed the free plan available with MongoDB and the speed of access times

are also not important to users.

A python script was used to slim down the simulator output data to a more digestible format for
the database, in addition to removing any excess data not useful to the user themselves. This

code crawled through each simulation output file, took the parameters for each run, the specific



requested output data, and the label for the run, and created a dictionary in the script. This
dictionary was then used to input the data as needed into the document-style format present in

MongoDB.

3.1.5 Website
The website can be broken down into two chunks: the Front-end and the Database-as-a-service

(DBaaS). Their connectivity and properties can be seen in Figure 2 below.

FRONTEND

Figure 2. Website Server and Database Relation

The website as a subsystem is the most user-facing element, so it must be intuitive and fast for it

to not bottleneck the rest of the work that goes into this project.

The first element inside this subsystem is the front-end server. This is the server that handles
rendering the web pages that the user interacts with. Requests sent from the front-end to the
DBaaS are sent through a React component that will handle network failures and retries. The UI
contained in the front-end code has multiple pages for the user to gain a better understanding of
the computer architecture content that our site pertains to as well as systems for the user to pull

simulated performance metrics for a set of input parameters. It also contains multiple ways to



compare that data as you vary sets of parameters, such as how a specific performance metric

changes as you increment or decrement a system parameter.

The front-end is composed of multiple key libraries, frameworks, and environments. React was
chosen as the structure for site over alternatives like Flutter, Angular, and jQuery because of its
simplicity and familiarity. Chart.js, React-toastify, and Styled-components are all additional
libraries that will help generate our graphs, send notifications, and reduce the clutter of our react
components respectively. Without using these free, open-source libraries, we could still construct

the website, but it would be significantly more time-consuming and of lower quality.

The DBaasS server is the server that handles data and communication with the database. It
verifies that requests to specific URLs return properly serialized, formatted information that the
front-end can utilize. The DBaaS is a service provided by MongoDB which is also hosting our
database. Additionally, it allows the definition of functions that can be performed on the database
and queried from the front-end. We interact with this DBaaS using Realm-web which is a

lightweight package that provides connection functionality to Mongo services.

Combined together, they allow for an elegant, compartmentalized server network that will be
able to handle fetching the simulation data from the database and presenting it very easily with

minimal computation. Our servers are hosted on AWS.

4.0 DESIGN IMPLEMENTATION

Throughout the implementation phase of the project, multiple changes were made that were
unforeseen in the planning phase. Such changes included the parameters and benchmark for the
simulator team, a change of the database data hierarchy structure for the database team, and
changes to the back-end and visualization for the website team. These changes are detailed in the

following sections.
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4.1 Simulator

Many of the parameters changed throughout the implementation process due to unforeseen
limitations in both time available to run simulations and in what parameters could be feasibly
changed using the gem5 standard library. Originally, there were around twice as many planned
parameters, with many more values that were planned for simulation. However, each additional
parameter multiplies the total number of simulations by its number of values, causing an
exponential increase in simulation time as each parameter is added. Additionally, the limitations
within the gem5 standard library made it unfeasibly difficult to use certain other parameters, as
to do so major modifications would have to be made to the standard library to expose those

variables.

The benchmark was originally going to be SPEC CPU 2006, however we changed to the 2017
version since that was the version that we had access to through our faculty mentor. Additionally,
we had originally planned to run at least three of the benchmarks within SPEC, but again due to
simulation time constraints we had to use only one of the benchmarks, 505.mcf r. For similar

reasons only one checkpoint within that benchmark was used.

4.2 Database

For the database, there was only one change made between the planning and implementation
phases of the project. Originally, the database was designed to hold data in a mixed hierarchy
data schema, where certain data points would be prioritized over others for ease of searchability
when being called by the website. This proved to be unnecessary, as the website could easily
parse whole dictionaries of data in the form of stored documents for the simulator outputs. Thus,
the data outputs were stored as dictionaries, after being scraped for only needed data, and then
were easily accessed by the website. This turned out to be just as, if not more, efficient than the
initial plan, as the stored data for each run was not significant enough to have slow downs in

access times.

4.3 Website
When initially creating the website, it was designed with a front-end and back-end server that

was connected to the database. Given the simplicity of the query-based nature of the website, the

11



backend server was deemed unnecessary as the front-end server could query directly to the
public database. Removing the back-end server drastically decreased resource overhead and total
network complexity. This also simplifies the hosting process and cost by requiring only the

front-end server to be hosted on AWS.

Originally, the website was designed so that students could submit a few parameters they wanted
to keep static, and one they wanted to sweep over to observe how performance changes.
However, it became apparent that graphing the higher dimensional graphs required to represent
multi-variable states would become too complex and outside the capabilities of the graphing
library used on this website. This feature was reduced to a static state who had one parameter

that was swept over.

Due to the complexity of simulation, it was uncertain which parameters and metrics would be
used by the end of the project. During implementation, it was decided that the website would be
configurable such that it would recursively build out its inputs. This allows for rapid
reconfiguration, so that if the entire structure of the simulation including the parameters and
metrics it generates change, the website could be augmented to function with this new data in a

matter of minutes.

5.0 TEST AND EVALUATION

The test and evaluation section provides ample detail on the processes used to detail correct
system functionality during the design and implementation phases of the project. This includes
the methods used, results found, analysis performed, and any recommendations or actions taken

on behalf of those findings.

5.1 Method
The project is split into three main subsystems, consisting of the simulator, database and data
management, and website. During the last semester, test plans were laid out in the System

Design Report, and further updated at the start of the current semester.
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5.1.1 Simulator

SPEC 2017 was chosen as the suite of benchmarks to run in the simulator. These benchmarks are
too large to be run entirely within the simulator, and so each benchmark must be split into
smaller chunks called intervals. Then, a representative sample of intervals called simpoints are
chosen using SimPoint based on a basic block vector for each interval. A basic block is a chunk
of instructions with exactly one entry point and one exit point, and an interval’s basic block
vector counts the number of times that each basic block within a program was entered during that
interval. To test the process of simulating one of these simpoints for a single benchmark, first the
605.mcf s benchmark was chosen as it subjectively seemed simpler than the other benchmarks.
Next, that benchmark was configured and built for the target ISA and OS, which is x86 Linux.
The benchmark executable was then run with a tool such as Pin or Valgrind to generate the basic
block vectors, which were then fed into SimPoint to select the simpoints. The gem5 simulator
was built and a script will be written to simulate the benchmark using a CPU model without
accurate timing in syscall emulation mode. This initial simulation will create checkpoints, which
are saved states of the simulation, for each simpoint. Finally, one of the checkpoints will be
simulated with gem5 using a different script and run using a timing accurate model to conclude

the test.

5.1.2 Database

In the System Design Report, database testing was outlined as including three key parts: access
efficiency, correct data storage, and correct data reads.

Access efficiency has been optimized by storing data in full documents. Each run of the
simulator produces a set of output data and the parameters used in the simulation, which is then
stored into MongoDB in a document style form. By having the website access the requested data
through a document read method, parameters can be easily searched for, found, and read. This
has been tested extensively using sample data stored in the database and then accessing it from
the frontend website code.

Correct data storage has also been tested, where Python code can be used to place sample outputs
into MongoDB. These outputs can be checked for accuracy by using the MongoDB Atlas tool,

where testers are able to view the stored data in their correct document style format.
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Correct data reads have been tested, where the website frontend code is able to access the

accurate stored sample data from MongoDB and correctly show it as an output in code.

5.1.3 Website

The website is to be tested iteratively and methodically by focusing on user experience such that
the design of the website is friendly and intuitive to the user. This included questions such as
how aspects of the parameters and performance metrics should be displayed, how should the user
be able to manage these simulated runs of their systems, how should the user get around the

website, etc.

In addition to the experience of the website, the website’s functionality was tested with unit
testing and active edge case testing throughout development in addition to methodical design
practices which were iteratively improved through refactoring. This included connecting the user
to the database, creating, fetching, updating, and destroying documents, as well as how the code
should be rendered. Animations, sizing, local storage, and other components of the code that

were not easily unit-testable were actively tested throughout production.

5.2 Results
For each subsystem, relevant testing has yielded varying results, including timing issues,
incompatibilities, and errors as well as correct and efficient results. These results are given in

more detail in the following sections.

5.2.1 Simulator

The benchmark was successfully built and run on a laptop natively to confirm that it worked.
Although Pin was unable to generate basic block vectors for the benchmark as it was
incompatible with the newer versions of the Linux kernel, Valgrind was successful in generating
the vectors. SimPoint was successfully built, and it generated simpoints for the benchmark based
on the basic block vectors from Valgrind. The gem5 simulator was built successfully and a
simple test simulation was able to be run using system emulation mode. Furthermore, a test run
of SPEC2017’s gcc_r benchmark was started successfully in full system mode with a modified

sample script. However, since this script does not utilize simpoints/checkpoints, and due to the
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fact that gem5’s full system mode is 10,000-100,000x slower than bare metal; this benchmark

would take more than 130 days to finish simulating (best case scenario) [8].

10,000 * 20min / 60 min / 24hr = 138.888... days

Therefore, as determined before, it is indeed necessary to run benchmarks using the simpoint
methodology. By using the simpoint methodology, one simulation run including a warm up

phase is reduced down to under 10 minutes.

5.2.2 Database

For database storage of simulator outputs, document style data hierarchy was found to be the
optimal solution for ease of access by the frontend website code. Initial testing for data
correctness is shown below in Figure 3. The top example is from when the database was first
created and being tested for data input, while the bottom example is more representative of the
document style hierarchy that will be used in the final product. Data outputs were easily inserted

in the database by Python code and correctly read by the website frontend code during testing.
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_dd: ObjectId('6564eficaiT40Zebdlofandd )

Mame: "CompArchDatal23i"

ID: "Run2"

Description: "Hello! I have messed with data 1n the database!"

_id: ObjectId('G5f86b5c22286083832b98c3")

ID: "Run5"

branchPredictor: "TAGE"

cachefAssociativity: 32

cacheDatalatency: 32

cacheNumberOfMshrs: 22

cacheResponselatency: 32

cacheSize: 32

cacheTaglLatency: 22

cacheTargetsOfMshrs: 22

coherencePolicie: "MESI 2 Llevel"
r cpuType: Object

name: "RunS"

prefetcher: "Indirect memory"

replacementPolicie: "LFU™

valued: &

valuel: &

value2: 10

Figure 3. Data Hierarchy and Correctness Testing Example

5.2.3 Website

The website has been improving rapidly due to repeated and thorough testing and iteration of
design. The code to connect, fetch, filter, and direct query database documents has grown more
capable while reducing code length. The rendering code has been refactored to construct the
input and graphing of the simulations recursively and through mapping so that there is very little
repetition and clutter in the code. The website has maintained a very simple structure and has
reduced in size and complexity over time as the backend server was eliminated from the process
with our group instead opting to utilize MongoDB’s Atlas database as a service which gives us
direct query functionality without the need to run a second server. Authentication to our site is
anonymous and requires no accounts, we have opted for the states of each user's respective
accounts to be stored in local storage so that their last activity is locally accessible allowing for
continuous work between sessions. Additionally, users can save, export, import, and delete

simulation sets to organize their work more effectively.
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5.3 Analysis
In the following section, we break down the results gathered from testing done for each

subsystem, including the simulator, database, and website.

5.3.1 Simulator

All of the results up to the initial run of gem5 were completed, and so this portion of the test was
a success. There is some concern over any potential differences in the way that Valgrind counts
instructions vs gem5. For example, if Valgrind counts instructions within a system call, and
gem3 does not, then this would cause the simpoints to be incorrect for use with gem5. This can
be validated by making sure that total instruction count in gem5 matches or at least roughly
matches the total count reported by Valgrind. Since the interval size was chosen to be 100
million instructions, a difference of less than 1 million should indicate that the intervals are not

getting changed too significantly.

The issue which prevented the test from being completed before the writing of this report
occurred when it was realized that an assumption about the SPEC benchmarks being single
executables with no other dependencies was false. Most of the benchmarks must be passed input
files via command line arguments, and that capability is not demonstrated by the example gem5

script, which can only take a single binary and run it without any command line arguments.

Another current issue is how to integrate simpoints into the script that is running gem5. The
gem5 documentation is unclear about how to feed a pre generated set of simpoint files into an

existing script such that it will take checkpoints dynamically.

5.3.2 Database

Testing showed successful results for correctly storing data, reading correct data to the website,
and reading the data quickly. Of the available data hierarchies, the document style data hierarchy
was found to be the best way to move forward with fast and efficient accesses for the website

and thus, users.
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5.3.3 Website

The website has improved dramatically through this iterative design and testing process. It
maintains a low level of code length while increasing in quality. More functionality is continuing
to be built out to maximize the capability of the continually refactored and improved code. The
new recursive structure is capable of dynamically handling the input type of nested values
depending on the value of previously selected inputs which was not possible with the previously
static structure. This will allow for the user to dynamically assign filtered inputs for database
queries. The user is able to quickly augment the parameters displayed as well as change how the

graph looks.

The rest of the site is of high quality as it is highly dynamic and adjustable. A majority of its
functionality can be augmented from changing configuration JSON objects in one file. This
includes which values are displayed as well as how the inputs are presented. Ultimately, this will

also include the output of the graphs.

6.0 TIME AND COST CONSIDERATIONS
For the simulator, database, and website, there were some setbacks in terms of expected project
deadlines due to various factors. These time and cost considerations are discussed for each

subsystem below at length.

6.1 Simulator

The gemS5 simulator took considerably longer to learn how to use than was originally expected.
Specifically, there was extremely limited documentation on the checkpoint creation and
restoration processes, as well as how to customize various parameters the team wished to
experiment on. As a result of this unfortunately several parameters were cut from the list as the
way to customize them were never found. These problems held the team back several weeks
behind schedule. Once the checkpoint generation script and the simulation script were created
and tested, there was another unforeseen issue that caused delay. It was initially unclear how all
of the simulations would be run in parallel; however, the GNU parallel tool was found to be
capable of running all of the simulations. Once the tool was learned, progress on gathering

simulation results continued smoothly.
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6.2 Database

With simulator output data being held up in a lot of cases due to unforeseen roadblocks by the
simulator team, the database was not able to receive and process data until later than expected.
Although most of the output data management code had been written and tested, there was a
significant gap in time before actual output data was received for processing. However, once data
was received, the code was able to be run and within a few hours, the database had been
populated, ready for use by the website. Apart from this setback, no other issues with the

database in terms of time or cost were present.

6.3 Website

Due to the complexity of the data simulation, the website was unable to be built statically for a
set of expected inputs which required a significant amount of flexible, dynamic design to handle
any range of inputs. The result is a very extensible, quickly-modifiable site that can be changed
to handle all types of data from a single config file. Fortunately, since the server utilizes only a
frontend server, very little data transfer, and low query complexity, the incurred cost will likely

sit well beneath the free tier of AWS and Mongo’s DBaaS.

7.0 SAFETY AND ETHICAL ASPECTS OF DESIGN

In terms of safety considerations to our design, there are none that come to mind. The project is
based entirely online with no personal or private information needed to access it. No bodily harm
can come from any aspect of our project. In terms of ethical aspects, there is the potential issue
of data posted on the website not allowing students to learn the correct information they might be
looking for from the project, thus either invalidating the learning goals or worse, teaching the
wrong things. We have done our best to make sure that all simulation data is accurate and is
presented in an intuitive way to students so that any misunderstandings or misinformation are
minimized, if not eliminated. We aim to teach students using our website, and do so correctly and

with valid information and data.
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8.0 RECOMMENDATIONS

Past the current iteration of the project, multiple recommendations can be made for further
improvements, changes, or even experiments to run. For the simulator, more parameter and
benchmark options could be used. For the database, a different document hierarchy or database
service could be explored. Lastly, for the website, different visual aids might be possible or more

helpful for students.

8.1 Simulator

More of the SPEC 2017 benchmarks could be used to broaden the results and make them more
representative of actual workloads. This would significantly increase simulation time so a more
powerful computer would be needed to do this. Access to a supercomputer would allow for more
simulations to be run in parallel and would therefore enable such an improvement. More
parameters could also be added; however, doing so would increase simulation time exponentially
such that many of the combinations would need to be ignored. This could be done by creating a
limited number of basic system configurations. Then additional parameters could be varied while
the rest of the system is in one of the basic configurations. This would require the website
interface to be modified to remove the ability to choose any arbitrary system configuration and

instead choose some number of parameters to vary for a selected basic configuration.

8.2 Database

For the database, some different explorations of data hierarchies could be explored for future
iterations of the project. In our current version, each simulation run is stored as a whole
document, with each data point having no importance over another, simply stored in a dictionary.
For future versions, slimming of data stored or even having data stored under sections could be
possible, thus making searches and accesses faster and possibly more efficient from the website
side. In addition, a different database hosting service could be used. If increased data storage is
needed, MongoDB will no longer be able to work for the current version, and another database

or a paid version will need to be explored.
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8.3 Website

For further improvements upon the current system, detailed guides and lessons can be added to
help the user understand both the tool and the systems taught more effectively. The website’s
components easily have this capability and it would take few technical changes to achieve.
Additionally, more complex visual aids could be added with post-processing on the data inside
the database such as percentiles, direct comparisons between minimum and maximums, and

other processes which are more difficult to calculate or query than direct parameter searches.

9.0 CONCLUSION

Overall, the Computer Architecture Explorer was split into three separate main subsystems: the
simulator, the database, and the website. The gem5 simulator ran benchmark code to generate
performance data for the computer architecture using various parameters, the performance
metrics and specific settings were stored in a database, and lastly the website allows students to
pull different scenarios from the database and view them in a user interface. The gemS5 simulator
was chosen over a custom design, MongoDB was used for the database service with panda and
numpy for data crunching and sorting, and the website uses React, NodelS, Chart.js, Realm-web,

Styled-Component, and AWS.

Several problems were encountered throughout development, the most prominent and
detrimental of which was the unexpected lack of documentation for the gem5 simulator’s more
in depth functionality and characteristics. This has led to the unfortunate decision to cut back
several important parameters within the initial list that was to be explored, and thus negatively
impacted the core functionality of the website by an undesirably large amount. However, that is
not to say the project is incomplete, many interesting interactions are waiting to be explored by
users within the dataset produced by the remaining list of parameters. Overall the Computer
Architecture Explorer website should be a useful and fun way for future students and all other
interested parties to explore and understand the various intricacies and nuances in a computer’s

architecture.
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APPENDIX A — CHECKPOINT GENERATION SCRIPT

import argparse
from pathlib import Path

from gem5.
from gem5.
from gem5.
from gem5.
from gem5.
from gem5.
.resources.resource import (

from gem5

components.
components.
.memory.single_channel import SingleChannelDDR3_1600

components

components.
components.

boards.simple_board import SimpleBoard
cachehierarchies.classic.no_cache import NoCache

processors.cpu_types import CPUTypes
processors.simple_processor import SimpleProcessor

isas import ISA

BinaryResource,

SimpointResource,

)

from gem5.
from gem5.
from gem5.
from gem5.
from gem5.

resources.workload import Workload

simulate.exit_event import ExitEvent
simulate.exit_event_generators import save_checkpoint_generator
simulate.simulator import Simulator

utils.requires import requires

requires(isa_required=ISA.X86)

parser = argparse.ArgumentParser(
description="Generates checkpoints from simpoints"

)

parser.add_argument(
"--binary",
type=str,

required=True,
help="The binary to simulate.",

)

parser.add_argument(
"--arguments”,
type=str,
required=False,
default="",
help="The arguments to the binary for simulation.”

)

parser.add_argument(
"--simpoints",
type=str,
required=True,
help="The simpoint file.",

)

parser.add_argument(
"_ weights",
type=str,

required=True,
help="The weights file.",

)

parser.add_argument(
"--interval",
type=int,

required=False,
default=100_000_000,
help="The size of an interval in instructions.",

)

parser.add_argument(
"--warmup",
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type=int,

required=False,

default=1_000_000,

help="The size of the warmup in instructions.",

)

parser.add_argument(
"--checkpoint-dir",
types=str,
required=True,
help="The directory to store the checkpoints.",

args = parser.parse_args()
cache_hierarchy = NoCache()
memory = SingleChannelDDR3_1600(size="2GB")

processor = SimpleProcessor(
cpu_type=CPUTypes.ATOMIC,
isa=ISA.X86,
num_cores=1,

)

board = SimpleBoard(
clk_freq="3GHz",
processor=processor,
memory=memory,
cache_hierarchy=cache_hierarchy,

)

def parse_simpoint_file(path):
with open(path, "r") as file:
return [line.split()[0] for line in file.readlines()]

simpoints = [int(e) for e in parse_simpoint_file(args.simpoints)]
weights = [float(e) for e in parse_simpoint_file(args.weights)]

board.set_se_simpoint_workload(
binary=BinaryResource(
local_path=args.binary,
architecture=ISA.X86,
),
arguments=args.arguments.split(),
simpoint=SimpointResource(
simpoint_interval=args.interval,
simpoint_list=simpoints,
weight_list=weights,
warmup_interval=args.warmup,

)
dir = Path(args.checkpoint_dir)

simulator = Simulator(
board=board,
on_exit_event={
# using the SimPoints event generator in the standard library to take
# checkpoints
ExitEvent.SIMPOINT_BEGIN: save_checkpoint_generator(dir)
b
)

simulator.run()
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APPENDIX B — SIMULATION SCRIPT

import argparse
from pathlib import Path

from m5.stats import (
dump,
reset,

from m5.objects.BranchPredictor import (
LocalBP,
BiModeBP,
TAGE,
MultiperspectivePerceptron8KB,

from gem5.components.boards.simple_board import SimpleBoard
from gem5.components.cachehierarchies.classic.private_11_private_12_cache_hierarchy import (
PrivatelL1PrivatelL2CacheHierarchy,

from gem5.components.memory import DualChannelDDR4_2400
from gem5.components.processors.cpu_types import CPUTypes
from gem5.components.processors.simple_processor import SimpleProcessor
from gem5.isas import ISA
from gem5.resources.resource import (
BinaryResource,
SimpointResource,
CheckpointResource,
)
from gem5.resources.workload import Workload
from gem5.simulate.exit_event import ExitEvent
from gem5.simulate.simulator import Simulator
from gem5.utils.requires import requires

requires(isa_required=ISA.X86)

parser = argparse.ArgumentParser(
description="Simulates one checkpoint"

)

parser.add_argument(
"--binary",
type=str,

required=True,
help="The binary to simulate.",

)

parser.add_argument(
"--arguments",
type=str,
required=False,
default="",
help="The arguments to the binary for simulation.”

)

parser.add_argument(
"--simpoints",
type=str,
required=True,
help="The simpoint file.",

)

parser.add_argument(
"_ weights",
type=str,

required=True,



help="The weights file.",
)

parser.add_argument(
"--interval",
type=int,
required=False,
default=100_000_000,
help="The size of an interval in instructions.",

)

parser.add_argument(
"--warmup",
type=int,
required=False,
default=1_000_000,
help="The size of the warmup in instructions.",

)

parser.add_argument(

"--checkpoint",

type=str,

required=True,

help="The path to the checkpoint. Expects a directory with pmem file and cpt file.",
)

parser.add_argument(

"--l1size",

type=str,

required=False,

default="32kB",

help="Size of the L1 data cache.",
)

parser.add_argument(
"--12size",
type=str,
required=False,
default="512kB",
help="Size of the L2 cache.",
)

parser.add_argument(
"--pred"”,
type=str,
required=False,
default="perceptron",
help="Branch Predictor. Can be 'local', 'bimode', 'tage', or 'perceptron'.",

)

parser.add_argument(
"--robsize",
type=int,
required=False,
default=128,
help="Size of the reorder buffer.",

)

parser.add_argument(
"--regcount",
type=int,
required=False,
default=128,
help="Number of physical registers.",

)

parser.add_argument(
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"--alucount",

type=int,

required=False,

default=4,

help="Number of ALUs",
)

parser.add_argument(
"--mdcount",
type=int,
required=False,
default=4,
help="Number of multiplier/divider units.",

)
args = parser.parse_args()

# The cache hierarchy can be different from the cache hierarchy used in taking
# the checkpoints
cache_hierarchy = PrivatelL1PrivatelL2CacheHierarchy(

11d_size=args.llsize,

11i_size="64kB",

12_size=args.l12size,

)

# The memory structure can be different from the memory structure used in
# taking the checkpoints, but the size of the memory must be maintained
memory = DualChannelDDR4_2400(size="2GB")

processor = SimpleProcessor(
cpu_type=CPUTypes.03,
isa=ISA.X86,
num_cores=1,

)

def pred_arg_to_obj(arg):
if arg == "local":
return LocalBP()
elif arg == "bimode":
return BiModeBP()
elif arg == "tage":
return TAGE()
elif arg == "perceptron":
return MultiperspectivePerceptron8KB()
else:
assert False

processor.cores[0].core.branchPred.value = pred_arg_to_obj(args.pred)
processor.cores[0].core.numROBEntries.value = args.robsize
processor.cores[0].core.numPhysIntRegs.value = args.regcount
processor.cores[0].core.fuPool.FUList[0].count = args.alucount
processor.cores[0].core.fuPool.FUList[1].count = args.mdcount

board = SimpleBoard(
clk_freq="3GHz",
processor=processor,
memory=memory,
cache_hierarchy=cache_hierarchy,
)
def parse_simpoint_file(path):
with open(path, "r") as file:
return [line.split()[0] for line in file.readlines()]

simpoints = [int(e) for e in parse_simpoint_file(args.simpoints)]
weights = [float(e) for e in parse_simpoint_file(args.weights)]
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board.set_se_simpoint_workload(

binary=BinaryResource(
local_path=args.binary,
architecture=ISA.X86,

)

arguments=args.arguments.split(),

simpoint=SimpointResource(
simpoint_interval=args.interval,
simpoint_list=simpoints,
weight_list=weights,
warmup_interval=args.warmup,

)

checkpoint=CheckpointResource(
local_path=args.checkpoint,

)

)

def max_inst():
warmed_up = False
while True:
if warmed_up:
print("end of SimPoint interval")
yield True
else:
print("end of warmup, starting to simulate SimPoint")
warmed_up = True
# Schedule a MAX_INSTS exit event during the simulation
simulator.schedule_max_insts(
board.get_simpoint().get_simpoint_interval()
)

#dump()
reset()
yield False

simulator = Simulator(
board=board,
on_exit_event={ExitEvent.MAX_INSTS: max_inst()},

)

# Find warmup interval for the supplied checkpoint
def checkpoint_inst_count(checkpoint):
with open(checkpoint + "/m5.cpt", "r") as file:
for line in file.readlines():
parsed_line = line.split("="
if parsed_line[0] == "instCnt":
return int(parsed_line[1])

def simpoint_idx(checkpoint):
checkpoint_start_inst = checkpoint_inst_count(checkpoint)
simpoint_start_insts = board.get_simpoint().get_simpoint_start_insts()
min_diff = -1
min_idx = -1
for idx, simpoint_start_inst in enumerate(simpoint_start_insts):
diff = abs(simpoint_start_inst - checkpoint_start_inst)
if min_diff == -1 or diff < min_diff:
min_diff = diff
min_idx = idx
assert min_idx > 0@ and min_diff > 0 and min_diff < args.interval / 2
return min_idx

simulator.schedule_max_insts(
board.get_simpoint().get_warmup_list()[simpoint_idx(args.checkpoint)]
)

simulator
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